T=-16t^2+500

Simple and best practice solution for T=-16t^2+500 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for T=-16t^2+500 equation:



=-16T^2+500
We move all terms to the left:
-(-16T^2+500)=0
We get rid of parentheses
16T^2-500=0
a = 16; b = 0; c = -500;
Δ = b2-4ac
Δ = 02-4·16·(-500)
Δ = 32000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32000}=\sqrt{6400*5}=\sqrt{6400}*\sqrt{5}=80\sqrt{5}$
$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{5}}{2*16}=\frac{0-80\sqrt{5}}{32} =-\frac{80\sqrt{5}}{32} =-\frac{5\sqrt{5}}{2} $
$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{5}}{2*16}=\frac{0+80\sqrt{5}}{32} =\frac{80\sqrt{5}}{32} =\frac{5\sqrt{5}}{2} $

See similar equations:

| 2/3+x/2=5/6 | | 3(x+4)=4x-x+12 | | x=60+15 | | x=3(74)-18 | | 4x+3(5x+10)=68 | | x=60-15 | | 6x+12/3=8x/2-2 | | x=3(74)+3X-18 | | x=3(74)-3X-18 | | 391+x)=17+13 | | (x-6)9(2x-19)=23 | | 5x+13=7x+5+2x | | 6+7b=2(8+6b) | | 9x+16x=x+30 | | x=3(74)=3X-18 | | x-0.7x=240 | | 14x-45+x=90 | | 1/3s=7 | | 2/7(x)=20 | | 3x+7=× | | 2(4-3n)=20-3n | | 90=20r | | T=-16t^2+100 | | 6v=-9 | | -3x-9=-5-4x | | k+(-73)=-58 | | (80)(x)=45 | | 7/3=q+2/3 | | 13/10=j÷13/5 | | 64x^2+169=0 | | 13/10=j/13/5 | | G(x)=-x^2+3x+4 |

Equations solver categories